Prof. Dale van Harlingen, UIUC, Physics 498 Superconducting Quantum Devices

Lecture 2: Defining properties of superconductors

Explore the properties that define the superconducting state:

- 1. Zero resistance
- 2. Limits to superconductivity: critical temperature, critical magnetic field, critical current
- 3. Perfect diamagnetism --- the Meissner effect
- 4. Limits to the Meissner effect:
 - (a) penetration depth
 - (b) vortices --- Type II superconductivity
 - (c) anisotropy --- pancake vortices
 - (d) geometric effects --- Intermediate state
 - (e) surface superconductivity

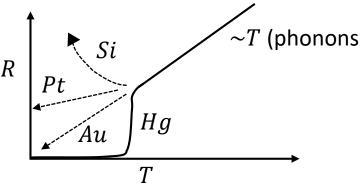
Basic properties of SCs:

1. **ZERO ELECTRICAL RESISTANCE** – primary defining property; one of the hardest to explain

* Discovery: Heike Kamerlingh Onnes Leiden 1911 (April)

First to liquefy helium

Studying normal metal conductance R vs. T



Si turns up Pt leveled off $Au \rightarrow 0$ gradually $H_a \rightarrow 0$ abruptly

Good experimentalist – 1st observed phenomenon, then tried to the understand behavior.

History of Discovery:

Discovered:

Au, *Pt* were not *SC* Hg,Pb,Sn were SC

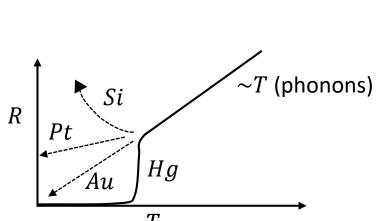
Defined critical temperature Defined critical magnetic field

Defined critical current

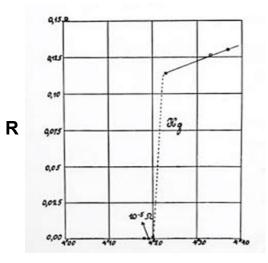
Found that the impurity content was not important (Anderson Theorem 1959)

Named it SUPRA-CONDUCTIVITY

IEEE Trans. Magnetic 23 (1987) -- 75th Anniversary Physics Today **63**, 9, 38 (2010) --- 100TH Anniversary



* Nobel Prize 1913



Two key questions:

1. How "zero" is the resistance?

$$H_g
ho (300K) \sim 10^{-4} \Omega$$
-cm

$$\rho(0K) < 10^{-12} \,\Omega$$
-cm

 $ho(0K) < 10^{-12} \, \Omega$ -cm factor of 10^8 lower $\,
ightarrow \,$ really small

For comparison, "pure" Cu $\rho(0K) \sim 10^{-10} \Omega$ -cm

Advanced experiments to test ρ

SC ring
$$\Longrightarrow L \ \ \, = \frac{L}{R}$$

$$L \ \ \, = \frac{L}{R}$$

$$L \ \, \frac{dI}{dt} + RI = 0 \ \, \Rightarrow \ \, I(t) = I(0) \, e^{-\left(\frac{R}{L}\right)t}$$

Apply magnetic field to induce a circulating current and monitor the decaying field in the loop for as long as you are willing to wait

Best result: Pb $\rho(0K) < 10^{-25} \Omega$ -cm $\rho(300K) \sim 10^{-5} \Omega$ -cm

factor of 10^{20} lower! \rightarrow It's really zero!

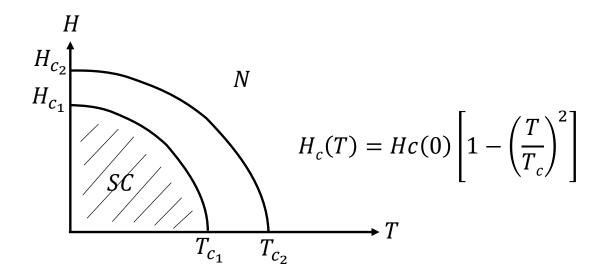
2. How sharp is the transition? --- is it an abrupt or a gradual change

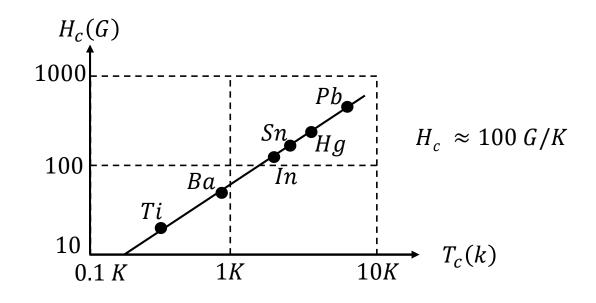
Depends on purity and homogeneity Broadened by magnetic fields and fluctuations

Best results $\Delta T < 10^{-5} K!$

2. CRITICAL TEMPERATURE/MAGNETIC FIELD/CURRENT

- SC destroyed by temperature T_c critical temperature
- SC destroyed by magnetic field H_c critical field





• SC destroyed by current flow I_c critical current

"Silsbee rule" - wire becomes normal when field at the surface reaches $\rm H_{\rm c}$

$$B = \frac{\mu_0 I}{2\pi r} \implies I_c = 2\pi r H_c/\mu_0$$

[not strictly true --- as we will see, geometry & microscopic effects "pairbreaking" --- play a big role as well]

3. PERFECT DIAMAGNETISM ($\vec{B} = 0$) Magnetic field <u>excluded</u> from SC

Discovery: Walther Meissner and Robert Ochsenfeld 1933

"Meissner effect"

This was a surprise – why?

Consider a perfect conductor
$$\rho = 0 \Rightarrow \overrightarrow{E} = 0$$

<u>Maxwell's equations</u>:

$$\vec{\nabla} \times \vec{E} = -\frac{d\vec{B}}{dt} = 0 \implies \frac{d\vec{B}}{dt} = 0 \qquad \therefore \vec{B} = \text{constant}$$

Meissner

Ochsenfeld

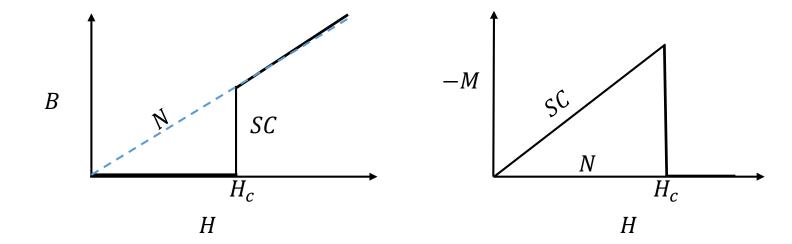
For a perfect conductor, the state below T_c depends on the history of the cooling

For a superconductor, the state below T_c behaves as zero-field cooled always!

 $\overline{B} = 0$ inside SC (not only $\rho = 0$)

Describe state as a PERFECT DIAMAGNET:

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$
 $\vec{B} = \vec{H} + 4\pi \vec{M}$ [cgs] $\vec{B} = 0 \rightarrow \vec{M} = -\vec{H}$



Two possible descriptions to give these field behaviors:

- (1) perfect diamagnetic material (local) \rightarrow this picture has some advantages for energy calculations
- (2) screening supercurrents flow to screen fields (global) → this is the accurate physics description

4. MAGNETIC FIELD PENETRATION

What we have discussed almost never occurs --- fields penetrate superconductors for many reasons:

(a) Penetration depth

Effective diamagnetism caused by screening currents that flow over a finite thickness near edge

"penetration depth"
$$\lambda = \sqrt{\frac{m}{ne^2\mu_o}}$$

Fields penetrate into sample over this distance --- we will characterize this phenomenon in various electrodynamic and microscopic theoretical models

(b) Type II superconductivity

Shubnikov (experiments); Abrikosov (theory)

Most SC are Type II and allow flux penetration in discrete "vortices" of magnetic flux

Type I SC: elements < 1% of all superconductors

Type II SC: alloys, compounds, thin films, dirty materials, disordered, unconventional,

*Important – allows SC (R=0) at fields well above the 100 g/K region

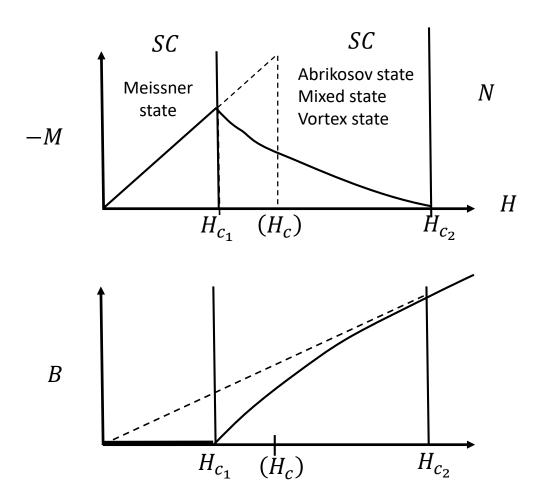
(if NbTi were type I, Hc \sim 1 KG instead of > 10 T) \times 100

Key: surface energy positive (Type I) or negative (Type II) --- we will study the theory in depth

interface between N and S regions

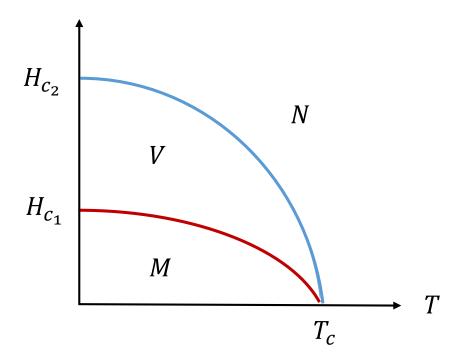
Phenomena:

1. Two critical magnetic fields (Hc_1 , Hc_2)



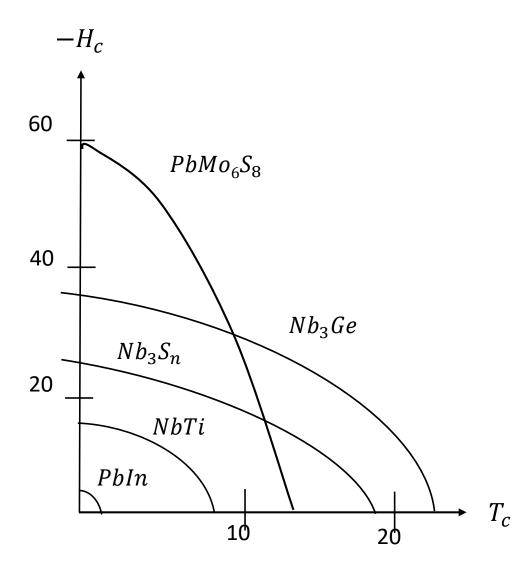
 Hc_1 field starts to penetrate

 Hc_2 field fully penetrates (normal state)

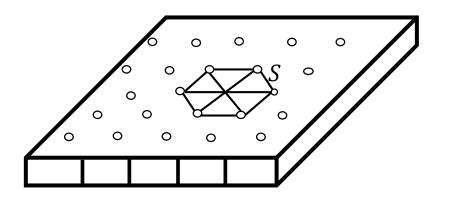


2. H_{c2} field scale can be much larger

T_c		H_{c2}
6 <i>K</i>	PbIn	0.2 <i>T</i>
10 <i>K</i>	NbTi	13 <i>T</i>
18 <i>K</i>	Nb_3S_n	23 T
15 <i>K</i>	$PbMo_6S_8$	60 T
90 <i>K</i>	YBCO	$\sim 100 T$?

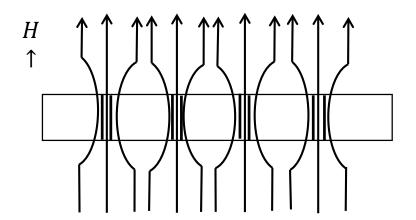


 $\text{Vortex state (H}_{c_1} < H_2 < H_{c_2})$



Triangular lattice of vortices of flux $\Phi_{\mathbf{0}}$

$$\Phi_0 = \frac{h}{2e}$$
= 2.07 × 10⁻⁷ G - cm²
= 2.07 × 10⁻¹⁵ Wb



$$n = \frac{B}{\Phi_0}$$

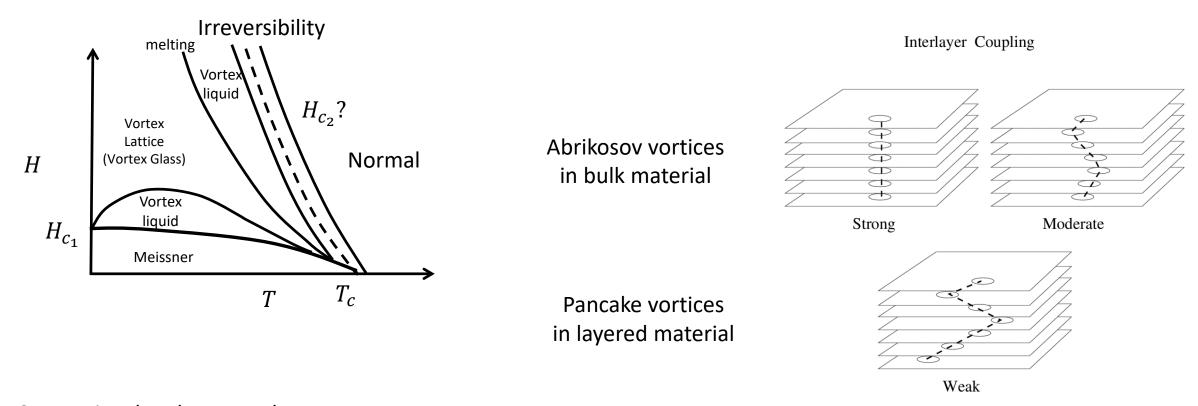
$$s = \left(\frac{2}{\sqrt{3}n}\right)^{1/2}$$

<u>Maximize</u> interface area subject to flux quantization constraint

(c) Anisotropic materials

HTSC are very anisotropic --- layered materials with weak interlayer coupling

This allows vortices to decouple between layers, giving rise to a complex vortex phase diagram

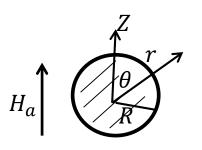


See review by Blatter et al.

(d) Geometric effects --- the intermediate state

Screening of fields is affected by the geometry of the sample \rightarrow demagnetizing effects

Consider a SC sphere:



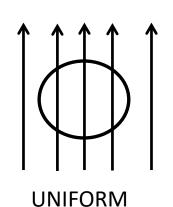
Inside:
$$\vec{B} = 0 = \vec{H} + 4\pi \vec{M}$$

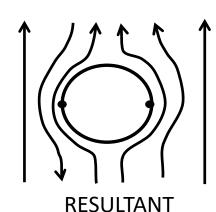
Outside:
$$\vec{\nabla} \cdot \vec{B} = 0$$
 $\vec{\nabla} \times \vec{B} = 0$

B.C:
$$\overrightarrow{B} \rightarrow Ha \ as \quad r \rightarrow \infty$$
 $\overrightarrow{B} \cdot \widehat{n} = 0 \quad r = R$ H_t continuous at $r = R$

OUTSIDE:
$$\vec{B} = \vec{H}_a + \frac{H_a R^3}{2} \vec{\nabla} \left(\frac{\cos \theta}{r^2} \right) = \vec{H}$$

INSIDE:
$$\vec{B} = O$$
 $\vec{H} = \frac{3}{2}Ha$ $\vec{M} = -\frac{3}{8\pi}H_a$



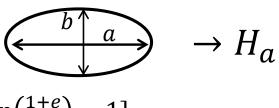


Demagnetizing Factor D

 $\vec{B} = 0$

(inside)

For ellipsoidal sample:

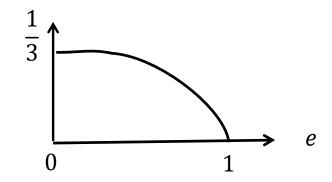


 $\vec{H} = \frac{H_a}{(1-D)}$ $\vec{M} = -\frac{H_a}{4\pi(1-D)}$

(outside)

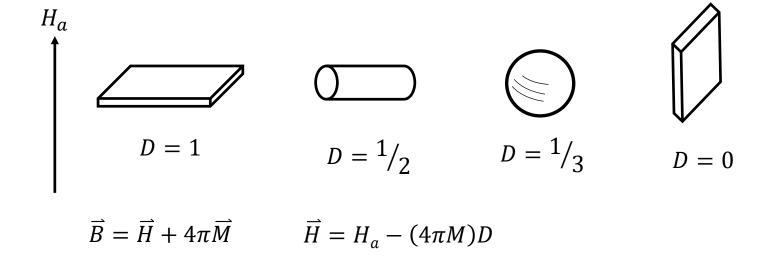
$$D = \left(\frac{1}{e^2} - 1\right) \left[\frac{1}{2e} \ln\left(\frac{1+e}{1-e}\right) - 1\right]$$

where
$$e = \frac{a-b}{a+b} = \text{eccentricity}$$

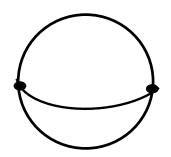


D

In general, Define demagnetizing factor for each shape:



(inside)



Since H_t continuous, $H_{eq} = B_{eq} = H$ inside

Look at equator:
$$H_{eq} = \frac{H_a}{1-D} > H_a$$
 for D>0

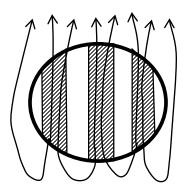
Turn up applied field, $H_{eq} >> H_c$ before $H_a = H_c$

<u>PARADOX</u>: system cannot stay SC $(H > Hc \Rightarrow N)$

system cannot go N (field penetrates so that $H = H_a < H_c \Rightarrow SC$)

edge cannot go N (still same problem)

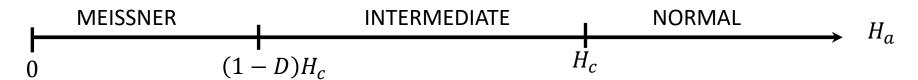
SOLUTION: system breaks up into N and S longitudinal



INTERMEDIATE STATE (between the Meissner and Normal states)

(like vortex state since flux penetrates but tries to <u>minimize</u> rather than maximize the amount of surface)

Field range:



Fields:

In S:
$$B = O$$
 $H = H_c$ $M = -\frac{H_c}{4\pi}$

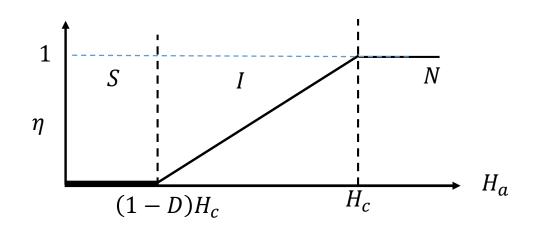
In N: $B = H = H_c$ M = O

(if more or less, interface would move as material goes $N \leftrightarrow S$)

Fraction of N material ($\equiv \eta$):

Conserve flux through sample to determine η :

$$D = 1: \langle B \rangle = \eta H_c = H_a \implies \eta = \frac{H_a}{H_c} = \frac{w_N}{w_N + w_S}$$



$$D < 1: \langle B \rangle = \eta H_c = [H_a - (1 - D)H_c]/D \Rightarrow \eta = \frac{H_a - (1 - D)H_c}{DH_c}$$

Derivation of η expression :

Consider sample as having an "average" magnetization <M> <u>less</u> than perfect diamagnetism value:

$$H = Ha - 4\pi < M > D = Hc \Rightarrow < M > = \frac{1}{4\pi} \frac{H_a - Hc}{D}$$

Compare to <M> in laminar structure:

$$0 < M > = \eta < MN > +(1 - \eta) < MS > = -\frac{1}{4\pi}(1 - \eta)H_c$$

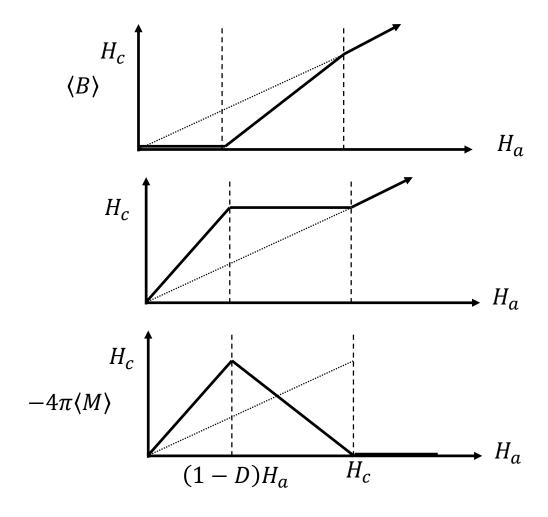
$$(\eta - 1)H_c = \frac{1}{4\pi} \frac{H_a - Hc}{D} \Rightarrow \eta = \frac{H_a - (1 - D)H_c}{DH_c}$$

Magnetic Properties (averaged properties)

$$< B > = (1 - \eta)0 + \eta H_c = \eta H_c$$
 $S \qquad N$

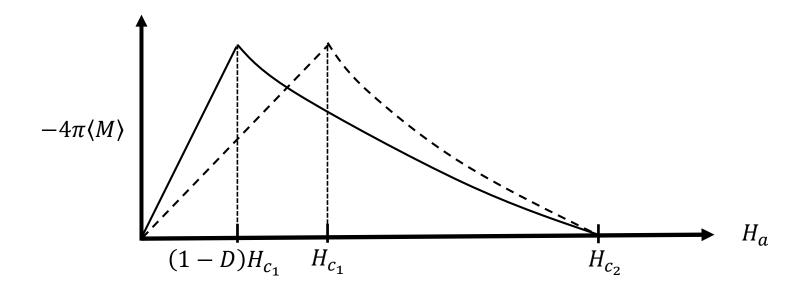
$$\langle H \rangle = H_c$$

$$< M > = < B > < H > = (\eta - 1)H_c$$



Intermediate state in Type II SCs

Same effects <u>below</u> H_{c1} – distorts magnetization



Laminae Structures

COMPLEX structure and calculation

- Ideal depends on geometry, fields, boundary energy (N/S)
- Real also depends on surface condition and sample homogeneity

Best model: Landau Domain Theory

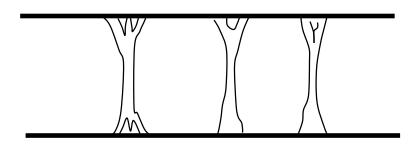
Add energies: condensation (SC) energy of S

field energy of N

spreading energy of field outside

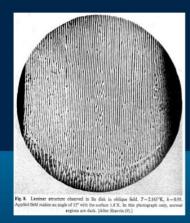
wall energy (N/S)

branching energy (domain broadening near the surface



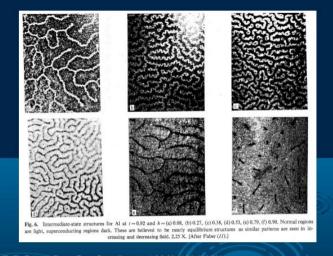
1.2 Intermediate state. Flux structures

Magneto-optical imaging of the flux structures formed in the intermediate state: **Thin Slabs**Laminar patterns → Landau description of the IS



V. Sharvin, *Zh. Eksp. Teor. Fiz.* **33**, 1341 (1957).

Applied magnetic field in plane Regular strip patterns!



T. E. Faber, Proc. Roy. Soc. (London) A248, 460 (1958).

Applied magnetic field is perpendicular to the plane Laberinthic patters: Random growth/movement

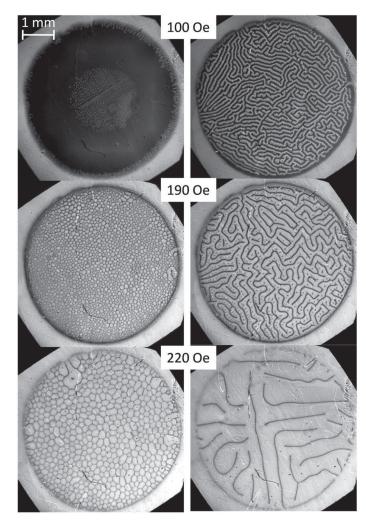
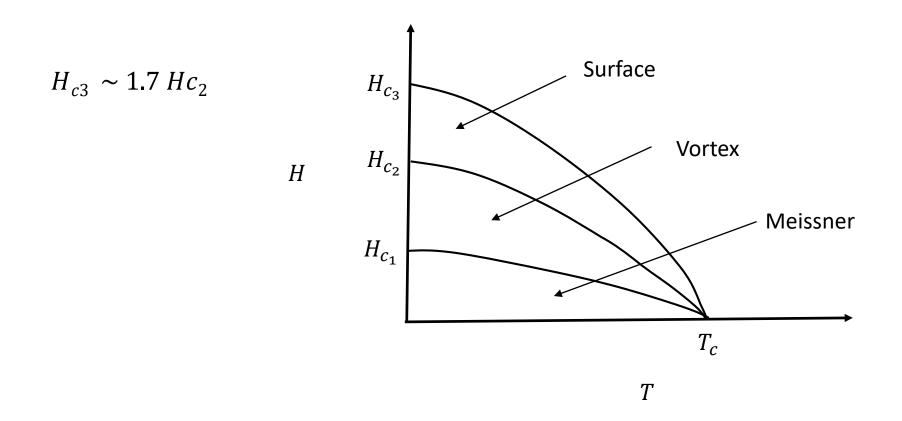


FIG. 2. Structure of the intermediate state in a disc-shaped Pb single crystal at 5 K. Left column—increasing magnetic field after ZFC. Right column—decreasing field.

(e) Surface superconductivity

Nucleation of SC favored near the surface \Rightarrow SC can exist at higher fields at surfaces



Physics: SC order parameter is suppressed at the surface (costing energy) but allowing field penetration (saving energy) --- we will see this trade-off in the Ginzburg-Landau model